KEY FOR PHDCS (Entrance Test held dated on 07.01.2024)

Q. NO. ANS.						
1		1				
2		4				
3		3				
4		2				
5		1				
6		1				
7		4				
8		1				
9		3				
10		3				
11		1				
12		3				
13		4				
14		3				
15		3				
16		1				
17	T	2				
18		3				
19		4				
20	T	3				
21	T	1				
22						
23		2				
24	T	3				
25		2				
26		1				
27		1				
28		3				
29		2				
30		3				

OR PHDCS (Ent				
Q. NO	ANS.			
31	Name of Street	3		
32	THE CO.	1		
33	NO.	4		
34		1		
35		2		
36		3		
37		2		
38		3		
39		4		
40		3		
41		4		
42		2		
43		1		
44		3		
45	T	1		
46	T	1		
47	T	4		
48	T	2		
49	T	1		
50	T	2		
51	T	3		
52	T	3		
53	Ī	4		
54		3		
55		2		
56		1		
57		1		
58		1		
59		1		
60		1		

Q. NO		ANS.
61		3
62		1
63		2
64		2
65		2
66		2
67		1
68		3
69		2
70		1
71		2
72		3
73		1
74		2
75		3
76		1
77	Γ	3
78	I	2
79		3
80	Γ	2
81		4
82		4
83		2
84		4
85		1
86		1
87		4
88		3
89		3
90		4

Q. NO.	ANS.
91	1
92	4
93	2
94	3
95	4
96	3
97	1
98	4
99	2
100	2

(Anot-P.V.superty)

Dr. Akishoy'k an (Oh D Candich

PHDCS

No. of Printed Pages: 24

Ph. D. (Computer Science) Entrance Test, July, 2023

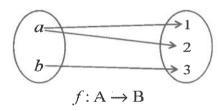
Time: 3 Hours Maximum Marks: 100

GENERAL INSTRUCTIONS

- 1. All questions are **compulsory**. Each question carries 1 mark.
- 2. No cell phones, calculators, books, slide-rules, notebooks or written notes, etc. will be allowed inside the examination hall.
- 3. You should follow the instructions given by the Centre Superintendent and by the Invigilator at the examination venue. If you violate the instructions, you will be disqualified.
- 4. Any candidate found copying or receiving or giving assistance in the examination will be disqualified.
- 5. The Question Booklet and the OMR Response Sheet (Answer Sheet) would be supplied to you by the Invigilators. After the examination is over, you should hand over the OMR Response Sheet and Question Booklet to the Invigilator before leaving the examination hall. Any candidate who does not return the OMR Response Sheet will be disqualified and the University may take further action against him/her.
- 6. All rough work is to be done on the question paper itself and not on any other paper. Scrap paper is not permitted. For arriving at answers you may work in the margins, make some markings or underline in the test booklet itself.
- 7. The University reserves the right to cancel the result of any candidate who impersonates or uses/adopts other malpractices or uses any unfair means. The University may also follow a procedure to verify the validity of scores of all examinees uniformly. If there is substantial indication that your performance is not genuine, the University may cancel your result.

How to fill up the information on the OMR Response Sheet (Examination Answer Sheet)

- 1. Write your complete Enrolment No. in 10 digits. This should correspond to the enrolment number indicated by you on the OMR Response Sheet. Also write your correct name, address with pin code in the space provided. Put your signatures on the OMR Response Sheet with date. Ensure that the Invigilator in your examination hall also puts his signatures with date on the OMR Response Sheet at the space provided.
- 2. On the OMR Response Sheet student's particulars are to be filled in by blue/black ball pen also. Use blue/black ball pen for writing the Enrolment No. and Examination Centre Code as well as for blackening the circle bearing the correct answer number against the serial number of the question.
- 3. Do not make any stray remarks on this sheet.
- 4. Write correct information in numerical digits in Enrolment No. and Examination Centre Code Columns. The corresponding circle should be dark enough and should be filled in completely.
- 5. Each question is followed by four probable answers which are numbered (1), (2), (3) and (4). You should select and show only one answer to each question considered by you as the most appropriate or the correct answer. Select the most appropriate answer. Then by using blue/black ball pen, blacken the circle bearing the correct answer number against the serial number of the question.
- 6. No credit will be given if more than one answer is given for one question. Therefore, you should select the most appropriate answer.
- 7. You should not spend too much time on one question. If you find any particular question difficult, leave it and go to the next. If you have time left after answering all the questions, you may go back to the unanswered question.
- 8. There is no negative marking for wrong answers.


- 1. Let function $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 3x 4. Then $f^{-1}(x)$ is given by:
 - $(1) \quad \frac{\left(X+4\right)}{3}$

 $(2) \quad \left(\frac{X}{3}\right) - 4$

(3) 3X + 4

- (4) 4X 3
- 2. If $A = \{1, 2, 3\}$, then which of the following is relation reflexive but not symmetric on A?
 - $(1) \quad \{(1,\,1),\,(1,\,2)\}$

- $(2) \quad \{(1, 1), (1, 2), (2, 1), (2, 2)\}$
- $(3) \{(1, 1), (2, 2), (3, 3)\}$
- $(4) \quad \{(1, 1), (2, 2,) (2, 3), (3, 3)\}$

- (1) many-one into function
- (2) many-one onto function

(3) not a function

- (4) one-one onto function
- 4. If A and B are two sets such that n(A) = 400, n(B) = 300 and $n(A \cup B) = 500$, then the value of $n(A \cap B)'$ is
 - (1) 100

(2) 200

(3) 150

- (4) 300
- 5. Given $A = \{1,2,3\}$, $B = \{7, 8\}$ and $R = \{(1, 7), (2, 7), (3, 7), (1, 8), (3, 8), then$
 - (1) $R^{-1} = \{(7, 1), (7, 2), (7, 3), (8, 1), (8, 3)\}$
 - (2) $R^{-1} = \{(1, 7), (2, 7), (3, 7), (8, 1), (8, 3)\}$
 - $(3) \quad \mathbf{R}^{-1} = \{(7, 1), (7, 2), (7, 3), (1, 8), (3, 8)\}$
 - $(4) \quad \mathbb{R}^{-1} = \{(7,\,1),\,(7,\,2),\,(3,\,7),\,(1,\,8),\,(3,\,8)\}$

	(1)	$A' \cup B'$	(2)	$A' \cap B'$	
	(3)	$A \cap B'$	(4)	$A' \cap B$	
7.	Give	en function $f: \mathbb{N} \to \mathbb{N}$ as $f(1) =$	3 and	$f(n) = 2f(n-1)$, then $f(5) = \dots$	•
	(1)	36	(2)	12	
	(3)	60	(4)	48	
8.	Out	of 40 people who read Book or	New	spaper, 30 reads Newspaper and 14	1 reads
	Bool	k. Find the number of people wh	o onl	y read Newspaper :	
	(1)	26	(2)	16	
	(3)	10	(4)	20	
9.	If $\begin{vmatrix} 2 \\ 8 \end{vmatrix}$	$\begin{vmatrix} 2x & 5 \\ 3 & x \end{vmatrix} = \begin{vmatrix} 6 & -2 \\ 7 & 3 \end{vmatrix}$, then the value	of x is	S	1.
	(1)	±3	(2)	-3	
	(3)	± 6	(4)	-6	
10.	If A	is a square matrix of order 3 an	d A	= -4, then $ adj A $ is equal to	
	(1)	5	(2)	6	
	(3)	16	(4)	-8	
11.	If A	$= \begin{bmatrix} 2 & x & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{bmatrix}, \text{ then } A^{-1} \text{ exists'}$	if		
	(1)	$x \neq -\frac{8}{5}$	(2)	$x \neq -\frac{5}{8}$	
	(3)	$x \neq -8$	(4)	$x \neq -5$	
PHD	cs		(4)		(P-10)

For any two sets A and B ; (A $\cap\,$ B)' is

6.

12.	If A	is an invertible matrix of order	2, the	en $\left A^{-1} \right $ is equal to
	(1)	$ \mathbf{A} $	(2)	1
	(3)	$\frac{1}{ \mathbf{A} }$	(4)	2
13.	If A	and B are invertible square m	atrice	es of size $n \times n$, then which of the following
	is n	ot true ?		
	(1)	$ \mathbf{A}\mathbf{B} = (\mathbf{A})(\mathbf{B})$	(2)	A = 5(B)
	(3)	$\left \mathbf{A'}\right = \frac{1}{\left \mathbf{B'}\right }$	(4)	$ \mathbf{A} - \mathbf{B} = \mathbf{A} + \mathbf{B} $
14.	IfA	and B are matrices of some ord		
	(1)	null matrix	(2)	unit matrix
	(3)	skew symmetric matrix	(4)	symmetric matrix
15.	If A	$= \begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix,	then	the value of k is
	(1)	± 5	(2)	± 6
	(3)	± 4	(4)	± 0
16.	A co	ommittee of 4 persons is to be	choser	n from a group of 10 persons. What is the
	prob	pability that a particular person	XYZ	is in the committee?
	(1)	$\frac{2}{5}$	(2)	
	(3)	$\frac{2}{7}$	(4)	$\frac{5}{11}$

(5)

(P-10)

17. Given the following probabilities:

$$P(A \cap B) = \frac{1}{12}$$
 and $P(B) = \frac{1}{2}$

Find the probabity of occurrence of event A, if the event B has atready occurred:

 $(1) \quad \frac{1}{12}$

(2) $\frac{1}{6}$

(3) $\frac{1}{3}$

(4) $\frac{2}{3}$

18. There are three identical bags, named, A, B and C. The bag A contains one green and one red balls; the bag B contains two green balls and bag C contains two red balls. One of the bags is selected at random and a ball is taken out, which is green. What is the probability that the other ball in the selected bag is green?

(1) $\frac{1}{3}$

(2) $\frac{2}{5}$

(3) $\frac{2}{3}$

(4) $\frac{3}{5}$

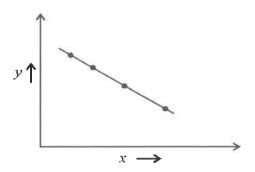
19. The probability of two events is represented as :

$$P(A \text{ or } B) = P(A) + P(B)$$

then the events A and B are

(1) Overlapping

(2) Similar


(3) Independent

(4) Disjoint

20. The Inter-Quartile range is calculated as the difference between:

- (1) Maximum and minimum
- (2) Median and minimum
- (3) Third and first quartile
- (4) Mean and median

21. Consider the following graph:

The expected value of a correlation coefficient between x and y for the graph above would be

(1) - 1

(2) - 0.5

(3) 0

(4) 1

22. The mean vaue of standard normal distribution is

(1) - 1

(2)

(3) 1

(4) 2

23. The end points of a confidence interval are called

- (1) Confidence coefficients
- (2) Confidence limits
- (3) Error of estimation
- (4) Parameters

24. The process of making estimates about the population parameter from a sample is called

- (1) Statistical decision
- (2) Statistical independence
- (3) Statistical inference
- (4) Statistical hypothesis

25. The estimator is said to be, if the mean of the estimator is not equal to the mean of the population parameter.

- (1) Negatively biased
- (2) Biased

(3) Unbiased

(4) Positively biased

26.	A fo	rmula or rule used for estimatir	ng the	e parameter of interest is called as
	(1)	Estimator	(2)	Estimate
	(3)	Interval estimate	(4)	Estimation
27.	A si	ngle value used to estimate a po	pulat	tion is called
	(1)	Point estimate	(2)	Level of significance
	(3)	Confidence limits	(4)	Interval estimate
28.	The	level of confidence is denoted by	y	
	(1)	α	(2)	β
	(3)	$1-\alpha$	(4)	1-β
29.	A s	tatistician calculates 95% conf	idenc	e interval for μ when σ is known. The
	conf	idence interval is ₹ 18,000 to ₹ 2	22,000), the amount of the sample mean is
	(1)	₹ 18,000	(2)	₹ 20,000
	(3)	₹ 22,000	(4)	₹ 40,000
30.	Whi	ch of the following probability d	listrik	oution describes the number of successes in
			, whe	ere each trial has the same probability of
	succ	eess ?		
	(1)	Normal distribution	(2)	Poisson distribution
	(3)	Binomial distribution	(4)	Exponential distribution
31.	The	exponential distribution is often	en us	ed to model the time between events in a
	Pois	sson process. What does the Pois	son p	process represent?
	(1)	A continuous random variable		
	(2)	A discrete random variable		
	(3)	A process with constant probab	bility	of events occurring
	(4)	A process with variable probab	oility	of events occurring

(8)

(P-10)

32.				veen a minimum (a) and maximum (b) are nsity function (PDF) with in this range?
	(1)	$\frac{1}{(b-a)}$ $(b-a)$	(2)	$\frac{(b-a)}{2}$
	(3)	(b-a)	(4)	$\frac{2}{(b-a)}$
33.	Wha	t is the mean (average) of a star	ıdard	normal distribution (Z-distribution)?
	(1)	0	(2)	1
	(3)	π	(4)	$\sqrt{2}$
34.	Whi	ch distribution has a "Skewed"	shap	e with a long tail on one side and is often
	used	to model income, stock prices, o	or oth	er financial data?
	(1)	Poisson distribution	(2)	Uniform distribution
	(3)	Exponential distribution	(4)	Log-normal distribution
35.	In a	binomial distribution, what doe	s the	"n" represent in the formula ${}^{n}C_{r}p^{r}q^{n-r}$?
	(1)	The number of successes	(2)	The number of trials
	(3)	The probability of success	(4)	The mean of the distribution
36.	The	normal distribution is symmetr	ic an	d described by two parameters : mean (μ)
	and			
	(1)	Skewness	(2)	Median
	(3)	Standard deviation (σ)	(4)	Variance
37.	Whi	ch one of the following is an iter	ative	method?
	(1)	Gauss-Seidel	(2)	Gauss-Jordan
	(3)	Factorization	(4)	Gauss Elimination
PHDO	cs		(9)	(P-10)

38.	Find the positive root of the equation $x^3 - 4x - 9 = 0$ using Regula-Falsi method and						
	correct to 4 decimal places:						
	(1)	2.8506	(2)	2.9570			
	(3)	2.7065	(4)	2.4605			
39.	Find	the value of Z after Ist Iteration	on to	solve the following equations using Gauss-			
	Seid	el method :					
		27 <i>x</i> -	+6y-	z = 85			
		6x+1	1 5 y+2	2z = 72			
		x + y	+542	c = 110			
	(1)	0	(2)	1.72			
	(3)	1.88	(4)	1.91			
40.	To s	solve a set of linear algebraic	equa	ations using Gauss Elimination method,			
	triar	ngularization leads to which of t	he fol	lowing types of matrix?			
	(1)	Singular matrix	(2)	Diagonal matrix			
	(3)	Lower triangular matrix	(4)	Upper triangular matrix			
41.	Sele	ction of the following method is	one p	oint method:			
	(1)	Secant method	(2)	Bisection method			
	(3)	Regula-Falsi method	(4)	Newton-Raphson method			
42.	Let	$f(2)=6$, $f'(2)=-\frac{1}{2}$ and $f''($	2)=1	0. Find most accurate approximation of			
	f(2	2), using Taylor's polynomial ap	proxi	mation:			
	(1)	8.2	(2)	6.1			
	(3)	7.3	(4)	5.9			
43.	Whi	ch of the following matrix do no	t have	e inverse ?			
	(1)	Singular matrix	(2)	Linear matrix			
	(3)	Non-singular matrix	(4)	Unidentified matrix			
PHDO	cs		(10)	(P-10)			

	(1)	$2^x \left(2^h - 1\right)$		$2^{-x}\left(2^{-h}+1\right)$
	(3)	$2^{x-h} - 2^{-x}$	(4)	$2^{-x}\left(2^h+1\right)$
46.	Whi	ch of the following is a valid rela	ation	between Δ , ∇ and E?
	(1)	$ abla = rac{\Delta}{\mathbf{E}}$	(2)	$\Delta = \frac{\nabla}{\mathbf{E}}$
	(3)	$\Delta = \frac{\mathbf{E}}{\nabla}$	(4)	$ abla = rac{\mathbf{E}}{\Delta}$
47.	******	is the approximate value of \int	$\frac{1}{0} \frac{dx}{1+x}$	using Trapezoidal rule.
	(1)	1	(2)	2
	(3)	0.5	(4)	0.75
48.	Ву.	rule, $\int_{a}^{b} f(x) dx = \frac{h}{3} [f(x)]^{b}$	0+4f	$f_1 + f_2$, where $h = \frac{b-a}{2}$.
	(1)	Trapezoidal	(2)	Simpson's
	(3)	Newton-Raphson's	(4)	Bisection
49.	Erro	or in composite Trapezoidal rule	is of	order
	(1)	h^2	(2)	h^3
	(3)	h^4	(4)	h

(11)

(P-10)

44. If $\Delta f(x) = f(x+h) - f(x)$, then for constant k, then the value of Δk will be

(4) 1

The expression (E-1) 2^x evalautes to

(2) f(k)-f(0)

 $(1) \quad f(x+k)-f(x)$

(3) 0

50.	Which of the follownig rules requires lesser number of points for evaluation of the				
	full	integral of a Gaussian function	?		
	(1)	Simpson's rule	(2)	Trapezoidal rule	
	(3)	Newton's rule	(4)	Raphson's rule	
51.	Con	sider the following function:			
		F(A, B, C, D) =	Σ (0,	1, 4, 5, 8, 9, 12, 13)	
	The	simplified function would be:			
	(1)	$\mathbf{F} = \overline{\mathbf{A}}$	(2)	F = B	
	(3)	$\mathbf{F} = \widetilde{\mathbf{C}}$	(4)	$\mathbf{F} = \mathbf{C}\overline{\mathbf{D}}$	
52.	Wha	at is the length of single error co	orrect	ing code for detecting error is 16 bit data?	
	(1)	3	(2)	4	
	(3)	5	(4)	6	
53.	Whi	ile implementing looping in ass	embly	y programming, which flag will be checked	
	to fi	nd termination of loop?			
	(1)	Carry flag	(2)	Overflow flag	
	(3)	Parity flag	(4)	Zero flag	
54.	In o	order to transfer a complete blo	ck of	data from a hard disk to memory, which of	
	the	following I/O techniques will be	used	?	
	(1)	Programmed I/O	(2)	Interrupt driven I/O	
	(3)	Direct memory access	(4)	Dedicated transfer mode	
55.	Hov	v many RAM chips of size 256	K×4	bit are needed to build a memory of 1 M	
	wor	d, with the size of 1 word being	32 bit	ts?	
	(1)	16	(2)	32	
	(3)	64	(4)	8	
PHD	cs		(12)	(P-10)	

56.	$\sim \forall_n$	$P(x) = \dots$		
	(1)	$\exists_x \sim \mathbf{P}(x)$	(2)	$\sim \exists_x P(x)$
	(3)	$\forall_x \mathrm{P}(x)$	(4)	$\sim \exists_x P(x)$ $\sim \forall_x P(x)$
57	~ (A	A∧B) =		
01.				
	(1)	~ A ∨ ~ B	(2)	~ A ^ B
	(3)	$B \wedge A$	(4)	$A \vee B$
58.	If A	= {1, 2, 3, 4, 5} and B = {3, 5, 6,	7}, the	en A – B =
	(1)	{1, 2, 4}	(2)	{6, 7}
	(3)	$\{3, 5, 6\}$	(4)	{3, 5}
59.	******	number of permutation	ns are	e there of the letters, taken all at a time, of
	the	word 'ASSESSES'.		
	(1)	8! 5! 2! 1!	(2)	5! 8! 2! 1!
	(3)	2! 5!8!1!	· (4)	1! 5! 8! 2!
60.	If G	is a (p,q) graph, then sum of th	ne deg	rees of the vertices of G is
	(1)	Twice the number of edges	(2)	The number of edges
	(3)	The number of vertices	(4)	Twice the number of vertices
61.	Cons		in r	elation to Object Oriented Programming
	I: A	an abstract method must be conf	tained	l in an abstract class.
	$\mathbf{II}: A$	An abstract method always have	state	ements inside it.
	Cho	ose the correct option :		
	(1)	Both I and II are true.	(2)	Both I and II are false.
	(3)	I is true and II is false.	(4)	I is false and II is true.
PHDO	cs		(13)	(P-10)

62.	Consider the following statements relating to structure in C++:								
	I: Structure is a user defined data type.								
	II: A structure is similar to records.								
	III : In C++ array of structure cannot be declared.								
	Cho	Choose the correct option:							
	(1)	(1) Both I and II are true but III is false.							
	(2) II is false III is true.								
	(3)	(3) Both I and III are true but II is false.							
	(4)	All I, II and III are false.							
63.	Cons	sider the following statements :							
	I : X	ML is case-sensitive.							
	$\mathbf{H}: \mathbf{H}$	HTML is not case-sensitive.							
	III: In HTMl end tag can be omitted but in XML end tag cannot be omitted.								
	Choose the correct option:								
	(1)	All I, II and III are false.							
	(2)	All I, II and III are true.							
	(3) I and II are false but III is true.								
	(4)	II and III are true but I is false).						
64.	In se	ervlet programming data sent w	ith th	e method is appended to the URL.					
	(1)	POST	(2)	GET					
	(3)	SERVICE	(4)	APPEND					
65.	. The process of representing an object along a circular path is called								
	(1)	Translation	(2)	Rotation					
	(3)	Scaling	(4)	Reflection					
PHD	cs		(14)	(P-10)					

66.	. Match the Column X with their corresponding description in Column Y:						
	Column X						Column Y
	(i)	Relati	onal Moo	lel		(a)	Represents data of entities, attributes, and relationships.
	(ii)	Entity	-Relatio	nship M	Iodel	(b)	Structures data in a tree-like format.
	(iii) Hierarchial Model (iv) NoSQL Database				(c)	Stores data using tables with rows and columns.	
					(d)	Optimzed for handling complex relationships, like social networks.	
	(v)	Graph	Model			(e)	Allows flexible, schema-less data storage.
	Cod	es :					
		(i)	(ii)	(iii)	(iv)	(v)	
	(1)	(c)	(a)	(b)	(d)	(e)	
	(2)	(c)	(a)	(b)	(e)	(d)	
	(3)	(a)	(c)	(b)	(d)	(e)	
	(4)	(c)	(a)	(e)	(d)	(b)	
67.			ion is the	_	_		ng data in a relational database to reduce
	(1)	Data F	Redundar	ıcy		(2)	Data Consistency
	(3)	Data A	ccuracy			(4)	Data Security
68.	In su	apervise	ed learni	ng for c	lassifica	tion w	hat is the role of the labelled dataset?
	(1)	It serv	er as the	test da	ıta.		
	(2)	It prov	ides the	input f	eatures.		
	(3)	It cont	ains botl	n input	features	and o	corresponding output labels.
	(4)	It is us	sed for m	odel va	lidation.		
PHD	cs ,					(15)	(P-10)

69.	Whi	ich of the following is a exa	mple	of an "Unsupervised" machine le	earning				
	tech	nnique commonly used in Big Da	ıta Aı	nalysis?					
	(1)	Linear Regression	(2)	K-means clustering					
	(3)	Decision Trees	(4)	Support Vector Machines (SVM)					
70.	Giv	Given a relation "Employees" with attributes (EmpID, Salary), what is the result of							
	the	query:							
	π- _{sa}	_{llary} (Employees) if there are 200	tuple	es in the "Employees" relation?					
	(1)	200							
	(2)	400							
	(3)	Depends on the values of salar	ies						
	(4)	2							
71.	In p	paging, every address generated	l by t	he CPV is divided into 2 parts	• • • • • • • • • • • • • • • • • • • •				
	and								
	(1)	Frame bit, Page number							
	(2)	Page number, Page offset							
	(3)	Page offset, Frame bit							
	(4)	Frame offset, Page offset							
72.	On	a system, where there are mu	ltiple	operating systems, the decision to	load a				
	part	ticular operating system is done	by						
	(1)	Process Control Block (PCB)	(2)	File Control Block (FCB)					
	(3)	Boot loader	(4)	Bootstrap					
7 3.	A de	eadlock can be broken by	•••••	••					
	(1)	aborting one or more processes	to b	reak the circular wait					
	(2)	aborting all the resources in th	e sys	tem abruptly					
	(3)	Preempt all resoruces from all	proce	esses					
	(4)	Run the process at background	l						
PHD	cs		(16)		(P-10)				

74.	In UNIX, which one of the following system call creates a new process?				
	(1)	Create	(2)	Fork	
	(3)	New	(4)	Process_new	
75 .	She	maphore is a/an to solve	e the	critical section problem.	
	(1)	Hardware of the system	(2)	Special program written for it	
	(3)	Integer variable	(4)	Character constant	
76.	_	roadmap that is followed to be	uild a	n timely, high quality software system is	
	(1)	Software process	(2)	Gantt chart	
	(3)	PERT chart	(4)	Bar chart	
77.	*****	is not an approach to agil	e soft	ware development.	
	(1)	Scrum	(2)	Entreme programming	
	(3)	Waterfall model	(4)	SAFE	
78. A is a document that is created when a detailed dscription of all				when a detailed dscription of all aspects of	
	the software to be guilt must be specified before the commencement of the project				
	(1)	Test specification	(2)	Software requirements	
	(3)	Detailed design	(4)	Bibiliography	
79.	****	focuses on the degree to wh	ich t	he implementation follows the design and	
	the resulting system meets its requirements and performance gools.				
	(1)	Quality of Code	(2)	Quality of Design	
	(3)	Quality of Conformance	(4)	Stress testing	
80.		is a test case design philosop	ohy tł	nat uses the control structure described as	
	par	t of component level design to de	rive t	testcases.	
	(1)	Blackbox testing	(2)	Glass box testing	
	(3)	Model based testing	(4)	Regression testing	
PHD	cs		(17)	(P-10)	

81. For the following pair of statements, what is the correct matching?

(D)

ii

iii

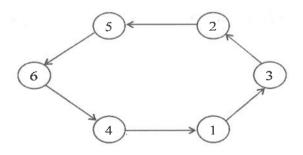
i

i

List I

- (A) Connected components
- (B) All pair shortest path
- (C) Quick sort
- (D) Minimum weight spanning tree

List II


- (i) Greedy
- (ii) Divide and Conquer
- (iii) Dynamic programming
- (iv) Depth-First Search

Codes:

- (A)
- (B)
- (C)
- (1) iv
- iii
- i
- (2) iv
- ii
- i
- •
- (3) iii
- iv

iii

- ii
- (4) iv
- ii
- 82. Let a Directed Acyclic Graph is as given below. Which of the following is a topological ordering?

(1) 6, 5, 4, 3, 2, 1

(2) 6, 4, 5, 3, 1, 2

(3) 6, 4, 5, 3, 2, 1

- (4) No topological ordering possible
- 83. Which of the following is true for the maximum and minimum number of nodes in a binary tree of height 6?
 - (1) 63 and 6 respectively
- (2) 127 and 7 respectively
- (3) 31 and 7 respectively
- (4) 128 and 6 respectively

0.4	.			7771 1 0 1				
84.	Let	et the following pairs of traversals are applied on a binary tree. Which of these						
	pair	s identify a binary tree uniquely	y ?					
	(i)	Preorder and Postorder	(ii)	Level order and Preorder				
	(iii)	Preorder and Inorder	(iv)	Postorder and Inorder				
	Cod	les:						
	(1)	(i) only	(2)	(ii) only				
	(3)	(iii) only	(4)	Both (iii) and (iv)				
85.	Con	sider the following statements:						
	(i)	The smallest element in a max	-hear	o is always at a leaf node.				
	(ii)	The second largest element in	a maz	x-heap is always a child of the root node.				
	(iii)	A binary search tree can be con	nstru	cted from a max-heap in $O(n)$ time.				
	Whi	ch of the above statements is/ar	e true	e ?				
	(1)	(i) and (ii) only	(2)	(i) and (iii) only				
	(3)	(ii) and (iii) only	(4)	(i), (ii) and (iii)				
86.	Whi	ch of the following can be use	ed to	prove that a particular language is non-				
	regu	ılar?						
	(1)	Pumping Lemma						
	(2)	Deterministic Finite Automata	ı					
	(3)	Non-deterministic Finite Auto	mata					
	(4)	Turing machine						
87.	The	Halting problem of Turing mac	hine i	s				
	(1)	Decidable problem	(2)	Solvable in finite time				
	(3)	Decision problem	(4)	Undecidable problem				
PHD	cs		(19)	(P-10)				

88.	Whi	ch of the following statements a	re tru	ne for an NP class of problems ?
	(i)	A set of decision problems the machine.	at a	re solvable by a non-deterministic turing
	(ii)	A set of decision problem which	n are	solvable in polynomial time, however, the
		order of that polynomial is 100	or m	ore.
	(iii)	A set of decision problems ver	rifiak	ele in polynomial time by a deterministic
		turing machine.		
	Cod	les:		
	(1)	Only (i) is true.	(2)	Both (i) and (ii) are true.
	(3)	Both (i) and (iii) are true.	(4)	All (i), (ii) and (iii) are true.

89. Consider the following context free grammar:

 $S \rightarrow aSa$

 $S \rightarrow bSb$

 $S \rightarrow \in$

What kind of strings this grammar will produce?

(1) $a^n b^n$

(2) $(ab)^n (ba)^n$

(3) Palindrome

(4) Strings with equal a's and b's

90. Which of the following is true for LL parser?

- (1) It parses the words from left to left.
- (2) It can parse only irregular languages.
- (3) These parsers are difficult to construct and are not used by any compiler.
- (4) A set of LL(k) languages are properly contained in the set of LL(kh) languages.

91.	Consider the following statements relating to Huffman coding:						
	I: The Huffman tree is a tree in which the leaves of the tree are the symbols.						
	II: Huffman coding assigns longer codes to teh symbols that occur more frequently.						
	Choose the correct option:						
	(1)	I is true and II is false.	(2)	Both I and II are true.			
	(3)	Both I and II are false.	(4)	I is false and II is true.			
92.	Con	sider the following statements r	elatin	ng to Data Link Layer (DLL) of OSI model :			
	I:L	ogical Link Control (LLC) is a s	ublay	er of DLL.			
	II:	Media Access Control (MAC) lay	yer do	es not belong to DLL.			
	Cho	ose the correct option :					
	(1)	Both I and II are false.	(2)	Both I and II are true.			
	(3)	I is false and II is true.	(4)	I is true and II is false.			
93.	Consider the following statements relating to data communication:						
	I: Attenuation is the gain to energy of a signal during propagation.						
	II: Bit rate is the number of bits trnasferred per minute.						
	Choose the correct option:						
	(1)	Both I and II are true.	(2)	Both I and II are false.			
	(3)	I is true and II is false.	(4)	I is false and II is true.			
94.	4. Routing is the primary job of which layer of OSI model?						
	(1)	Data Link Layer	(2)	Physical Layer			
	(3)	Network Layer	(4)	Session Layer			
95.	In C	SMA/CA, CA stands for:					
	(1)	Collision Advance	(2)	Code Advance			
	(3)	Collision Aggregation	(4)	Collision Avoidance			
PHDO	cs		(21)	(P-10)			

96.	Which of the following statement(s) is true about a perception?					
	(1)	A neural network that contains feedback.				
	(2)	An auto-associative neural network.				
	(3)	A single layer feedforward neural network with preprocessing.				
	(4)	A two layer auto-associative neural network.				

97. Let A and B are two fuzzy sets with membership function:

$$\mu_{\rm A}(x) = \{0.3, 0.4, 0.7, 0.8, 1.0\}$$

$$\mu_{\rm B}(x) = \{0.5, 0.6, 0.4, 0.7, 0.9\}$$

What will be the value of $\mu_A \cap \mu_B$?

```
(1) {0.3, 0.4, 0.4, 0.7, 0.9} (2) {0.5, 0.6, 0.7, 0.8, 1.0} (3) {0.8, 1.0, 0.1, 0.5, 0.9} (4) {0.2, 0.2, 0.3, 0.1, 0.1}
```

98. Which of the following terms is not related to genetic algorithm?

(1) Selection(2) Mutation(3) Reproduction(4) Evolution

99. An AI (Artificial Intelligence) agent performs which of the following functions?

- (1) Maps the goal-sequences to an action.
- (2) Maps the percept sequences to an action.
- (3) Maps the environment sequences to an action.
- (4) Works without direct inference from any external factor like human.

100. Which of the following is used by adversarial search problems?

- (1) Cooperative environment
- (2) Competitive environment
- (3) Neither competitive nor cooperative environment
- (4) Both cooperative and competitive environment

Space for Rough Work रफ कार्य के लिए

Space for Rough Work रफ कार्य के लिए